

????? ?????? ?????? ? ?????? diode

Агент, находящийся в изолированном сегменте сети, собирает события с источников и перемещает их в директорию источник, откуда их забирает диод (дата-диод) (сторонний производитель, вне решения КИМА). Диод переносит файлы в директорию назначения основной сети, удаляя их директории источника. Из директории назначения события собирает коллектор, удаляя их после считывания.

Для осуществления описанного способа передачи событий через диод используется пара destination и connector типа diode, destination на агенте и connector на коллекторе. Агент может иметь любые из возможных типов connector, а коллектор - любые из возможных destination.

Агент при работе накапливает события в буфер. Как только буфер становится размером >=bufferSize (по умолчанию 64 Мб), или с момента предыдущей записи буфера в файл проходит > FlushInterval (по умолчанию 10 сек):

- Агент записывает события в файл во временной директории, указанную пользователем
- Агент переносит файл из временной папки в "Директорию, из которой диод данных получает события (Data diode source directory)", попутно переименовывая файл. Название файла содержит sha256 хеш содержимого для возможности осуществления проверки целостности.

Точки назначения

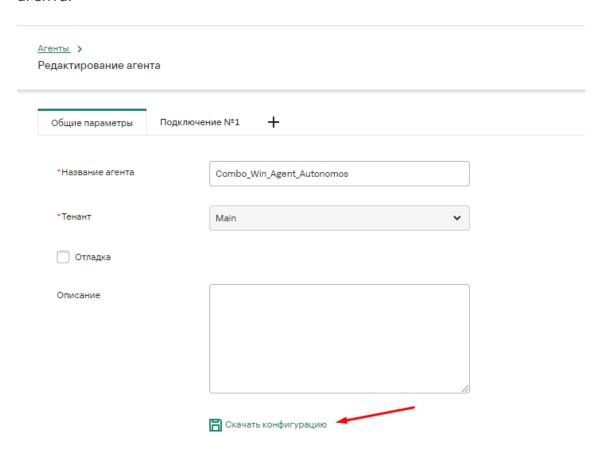
Основные параметры Дополни	тельные параметры	
Точка назначения	Создать	~
Название*	destinationDiode	
Состояние		
Тип*	diode	~
Директория, из которой диод данных получает события*	j /data	
Временная директория* (і)	/temp	

По умолчанию сжатие файлов не происходит, но его можно осуществлять, если выбрать в настройках destination данную опцию. В этом случае для корректной работы тот же алгоритм должен быть указан в соответствующем diode connector.

При считывании (diode connector) sha256 хеш содержимого файла сравнивается с хешем из имени файла, при несоответствии файл удаляется и создается событие аудита.

Ресурс точки назначения в агенте должен иметь тип diode. В этом ресурсе необходимо указать директорию, из которой диод данных будет перемещать файлы во внешний сегмент сети.

Для diode-агента невозможно выбрать коннекторы типа sql или netflow.


????????????????????

Конфигурацинный файл агента сохраняется в человекочитаемом виде для возможности добавления секретов вручную. Для избежания сохранения секретов в открытом виде, содержимое реальных секретов заменяется на шаблоны соответствующего типа секрета, также в конфигурационном файле генерируются шаблоны в местах, где это явно указано (см п. Шаблоны секретов). В ресурсах внутри агента, использующих секреты указан UUID секрета, содержимое секретов находится отдельно в поле secrets. Данные секретов можно заполнить вручную в конфигурационном файле, изменяя поля секретов.

Далее в таблице описаны поля секрета.

Имя поля	Тип	Описание
user	строка	Имя пользователя
password	строка	Пароль
token	строка	Токен
urls	массив строк	Список url
publicKey	строка	Публичный ключ (используется в РКІ)
privateKey	строка	Приватный ключ (используется в РКІ)
pfx	строка, содержащая base64 закодированное содержимое pfx	Содержимое pfx файла, закодированное в base64. На linux получить base64 кодировку файла можно при помощи команды base64 -w0 src > dst
pfxPassword	строка	Пароль от pfx
securityLevel	строка	Используется в snmp3. Возможные значения: NoAuthNoPriv, AuthNoPriv, AuthPriv
community	строка	Используется в snmp1
authProtocol	строка	Используется в snmp3. Возможные значения: MD5, SHA, SHA224, SHA256, SHA384, SHA512
privacyProtocol	строка	Используется в snmp3. Возможные значения: DES, AES
privacyPassword	строка	Используется в snmp3
certificate	строка, содержащая base64 закодированное содержимое pem	Содержимое рет файла, закодированное в base64. На linux получить base64 кодировку файла можно при помощи команды base64 -w0 src > dst

Конфигурационный файл скачивается из веб-интерфейся ядра КUMA в части настроек агента:

?????? ?????? (????????????)

При установке агента его конфигурационный файл не должен находиться в директории, в которую устанавливается агент.

Необходимо при помощи списка контроля доступа (ACL) настроить права доступа к конфигурационному файлу так, чтобы доступ на чтение файла был только у пользователя, под которым будет работать агент.

TLS не работает, тк требуется подключение к ядру.

Справочная информация об установщике доступна по команде: kuma.exe help agent

Linux

Примите лицензионное соглашение: /opt/kaspersky/kuma/kuma license

Для запуска агента требуется скопировать файл /opt/kaspersky/kuma/kuma с машины, где установлена KUMA на машину с linux, где будет запущен агент и запустить его: ./kuma agent --cfg <path to config file> --wd <path to working directory>

Через опцию --wd указывается путь для хранения файлов агента, по умолчанию они будут храниться в текущей директории.

Конфигурационный файл может содержать секреты, его следует защищать при помощи ACL, позволяющих чтение только пользователю KUMA (600).

Windows

Примите лицензионное соглашение: /opt/kaspersky/kuma/kuma.exe license

Без установки

kuma.exe agent --cfg <path to config file>

kuma.exe agent --cfg <путь к конфигурационному файлу агента> --wd <путь к директории, где будут размещаться файлы устанавливаемого агента. Если не указывать этот флаг, файлы будут храниться в директории, где расположен файл kuma>

С установкой

kuma.exe agent --cfg <path to config file> --user <user to start service as> --install

При установке используемый конфигурационный файл перемещается в рабочую директорию (ProgramData\Kaspersky Lab\KUMA\agent\<serviceID>\) (ID берется из ресурса агента в конфигурационном файле), kuma.exe перемещается в рабочую директорию (Program Files\Kaspersky Lab\KUMA).

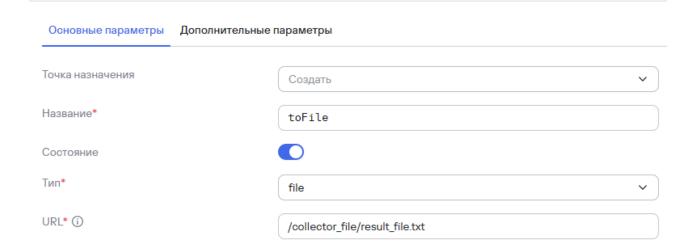
В дальшейшем используется перемещенный конфигурационный файл.

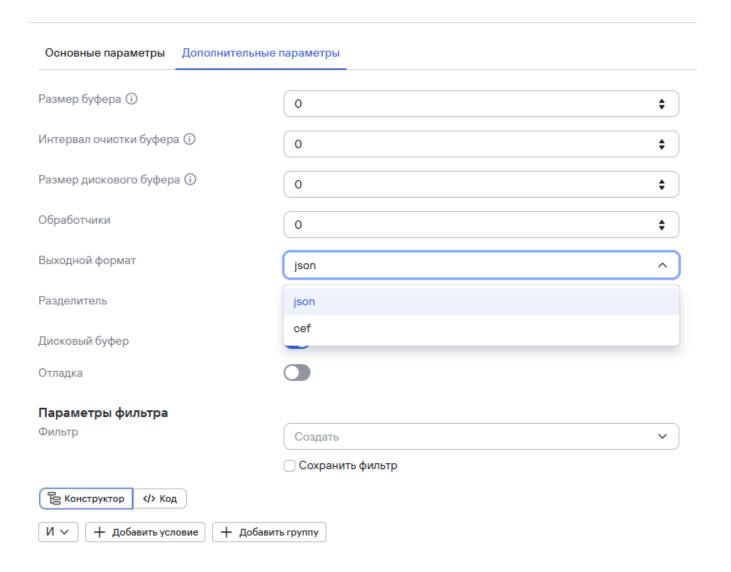
Конфигурационный файл может содержать секреты, его следует защищать при помощи ACL, позволяющих чтение только пользователю от чьего лица запускается КUMA.

???????

kuma.exe agent --cfg <path to config file> --uninstall

или


kuma.exe agent --id <идентификатор сервиса агента, созданного в KUMA> --uninstall


Для установки коллектора (т.к. агент поддерживает не все типы коннекторов) необходима связь с ядром, для этого ставим дополнительное отдельное ядро в изолированный сегмент, которое будет управлять этим коллектором. Далее коллектор в маршрутизации пишет результат обработки события НЕ в хранилище, а в файл (например: результирующий файл по работе с БД это JSON формат или СЕГ). Предварительно необходимо создать путь (папку) и дать права для пользователя kuma:

chown -R kuma:kuma /collector_file/
chown -R kuma:kuma /collector_file/result_file.txt

Создание точки назначения

Создание точки назначения

Далее этот файл забирает автономный агент и отправляет по диоду в корп сегмент по схеме в начале статьи.

Revision #15 Created 11 August 2023 14:23:49 by Boris Rzr Updated 5 September 2025 07:45:03 by Boris Rzr