

В данной книге зарегистрированные пользователи могут создавать свои собственные статьи. После прохождения модерации такие статьи могут быть перенесены в существующие разделы базы знаний.

- Балансировка UDP/TCP трафика (L3-L4) средствами службы Nginx
- Массовое обновление КИМА агентов
- Включение IPv6 Oracle\CentOS\RedHat

Информация, приведенная на данной странице, является разработкой команды presales и/или community KUMA и **HE** является официальной рекомендацией вендора.

Официальная документация по данному разделу приведена в Онлайн-справке на продукт: Управление потоком событий с помощью nginx (kaspersky.com)

Чтобы настроить балансировку трафика между коллекторами KUMA:

- 1. Установите nginx на сервере, предназначенном для управления потоком событий (предпочтительно выделенные сервера, не менее двух)
 - Команда для установки в Oracle Linux 8.6: \$sudo dnf install nginx
 - Команда для установки в Ubuntu 20.4:

 \$sudo apt-get install nginx

 При установке из sources, необходимо собрать с параметром -with-stream:

 \$sudo ./configure -with-stream -without-http_rewrite_module -without-http_gzip_module
- 2. Подготавливаем конфигурационный файл nginx.conf, где блоки выделенные красным меняем (название\ip адреса\порт) под свою задачу.

```
{
    upstream back_FW_ASA {
    server 10.11.17.145:514;
    server 10.11.18.145:514;
    }

u

server {
        listen 514 udp;
        proxy_pass back_FW_ASA;
        proxy_bind $remote_addr transparent;
    }
```

При помощи данного файла nginx будет "прозрачно" для коллекторов пробрасывать оригинальный сетевой пакет трафика, позволяя передать реальный адрес\имя устройства, которое передало лог. При необходимости прослушивания TCP убираем в 16 строке udp.

```
user nginx;
worker_processes auto;
error log /var/log/nginx/error.log;
pid /run/nginx.pid;
# Load dynamic modules. See /usr/share/doc/nginx/README.dynamic.
include /usr/share/nginx/modules/*.conf;
events {
    worker_connections 1024;
}
stream {
        upstream back_FW_ASA {
        server 10.11.17.145:514;
        server 10.11.18.145:514;
        }
        server {
                listen 514 udp;
                proxy_pass back_FW_ASA;
                proxy_bind $remote_addr transparent;
        }
}
```

- 4. Служба балансировщика будет "прослушивать" 514 порт со всех IP адресов сервера, для большей отказоустойчивости служб предлагается использовать службу keepalived на двух серверах. Настройка keepalived

???????? ???????? KUMA ??????

Информация, приведенная на данной странице, является разработкой команды presales и/или community KUMA и **HE** является официальной рекомендацией вендора.

Данный механизм работает с версии 3.4 KUMA, т.к именно в ней добавилась поддержка ключа --accept-eula

С сервера, на котором будем запускать скрипт понадобятся сетевые доступы к серверам по 5985/ТСР для запуска команд и 445/ТСР для передачи файлов, также права локального администратора на сервере.

За основу берем скрипт

И заполняем в нём ключевые поля, а именно:

```
# Список серверов

$servers = @("server1.domain.local", "server2.domain.local")

# Задаем переменную версии

$version = "3.4.1.53"

# Локальный путь к файлу, который нужно скопировать

$localFilePath = "C:\Temp\kuma.exe"

# Путь на удаленном сервере, куда будет скопирован файл (если используется нестандартный путь для установки КUMA агента)

$remoteFilePath = "C$\Program Files\Kaspersky Lab\KUMA\kuma.exe"
```

Принцип работы скрипта:

- 1. Подключается к серверам из списка (поочередно)
- 2. Проверяем, есть ли служба КИМА на сервере
- 3. Остановка службы KUMA
- 4. Копируем обновленный файл kuma.exe в директорию KUMA

- 5. Правим файл с лицензионным соглашением (обновляем значение версии в файле .licenseversion
- 6. Добавляем в реестре, в службе KUMA ключ --accept-eula
- 7. Запускаем службу KUMA агента

???????? IPv6 Oracle\CentOS\RedHat

Информация, приведенная на данной странице, является разработкой community КUMA и **HE** является официальной рекомендацией вендора.

Для того, чтобы включить IPv6 нам понадобится:

1. Проверить наличие трех полей по части IPv6 с правильным атрибутом (no\yes), в файле

/etc/sysconfig/network-scripts/ifcfg-ens192 (имя интерфейса может меняться, точный необходимо уточнять командой ір а) как в примере, если их нет - добавляем их (при необходимости правим значения.):

```
IPV6INIT=yes
IPV6_DEFROUTE=yes
IPV6_FAILURE_FATAL=no
```

2. Проверяем папку /etc/sysctl.d/* на наличие файлов, если они есть - ищем в них следующие строки конфигурации. Обычно используются:

```
net.ipv6.conf.lo.disable_ipv6 = 1
net.ipv6.conf.all.disable_ipv6 = 1
net.ipv6.conf.default.disable_ipv6 = 1
```

Если файлов *.conf в папке /etc/sysctl.d/ нет, или отсутствуют строки, касающиеся работы IPv6 - идем в файл /etc/sysctl.conf и ищем в нем данные строки, если нашли - комментируем их (#перед строкой).

- 3. Вводим команду sysctl -p, IPv6 локальный должен появится. Проверяем командой ip -6 addr
- 4. Если адрес не появился, проверяем файл /etc/default/grub в строке GRUB_CMDLINE_LINUX добавляем ipv6.disable=0 Должно получиться: GRUB_CMDLINE_LINUX="ipv6.disable=0", также в этой строке могут быть другие параметры, не стираем их, а добавляем. Запятую ставить не нужно.
- 5. Запускаем команду sudo grub2-mkconfig и sudo init 6. Сервер перезагрузится.
- 6. Проверяем командой ip -6 addr

Особый случай с RedOS 8:

Все вышеуказанные рекомендации были применены, но grub не обновлялся. Пришлось править руками файл /boot/grub2/grub.cfg так как оставались записи (выделены желтым)

После правки файла не забываем выполнить grub2-mkconfig